Database In-Memory 2
Under The Hood

Tirthankar Lahiri
Vice President
Data Technologies and TimesTen
October 28, 2015

#DBIM12c
A Brief History of Time

Before OOW 2013

Miscellaneous Events

• Big Bang
• Dinosaurs
• Battlestar Galactica
• Relational Databases
• Back to the Future 1,2,3
• etc.
Relational Databases: **Row Format or Column Format?**

- **Transactions** run faster on row format
 - Example: Insert or query a sales order
 - Fast processing for few rows, many columns

- **Analytics** run faster on column format
 - Example: Report on sales totals by region
 - Fast accessing few columns, many rows

State of the Art: Choose One Format, Enjoy Benefits, Live with Drawbacks
A Brief History of Time

Before 2013

- Big Bang
- Dinosaurs
- Battlestar Galactica
- Relational Databases
- Back to the Future 1,2,3
- etc.

OOOW 2013

- Industry first dual-format in-memory database
- Trivial to deploy

Miscellaneous Events
Oracle Database In-Memory: Dual Format Architecture

- **BOTH** row and column formats for same table
- Simultaneously active and consistent
- OLTP uses existing row format
- Analytics uses new In-Memory Column format
In-Memory Columnar Format

- Pure in-memory column format
 - Enable for subset of database
 - Cheap to maintain – no logging or IO
 - Allows efficient OLTP
 - No change to disk format
- Built **seamlessly** into Oracle Database
 - **Transparent** to Applications
 - **All** Enterprise Features work ..
 - Availability – RAC, Flashback, DataGuard, etc.
 - Security – Encryption, Auditing, etc.
A Brief History of Time

Before OOW 2013

- Big Bang
- Dinosaurs
- Battlestar Galactica
- Relational Databases
- Back to the Future 1,2,3
- etc.

OOOW 2013

- Industry first dual-format inmemory database
- Trivial to deploy

July 2014

- Oracle Database 12.1.0.2
- Orders of magnitude faster analytic workloads
- Faster Enterprise mixed-workload OLTP

Miscellaneous Events

- etc.
Superfast In-Memory Scans

- Each CPU core scans only required columns
- SIMD vector instructions used to process multiple values in each instruction
 - E.g. Intel AVX instructions with 256 bit vector registers
- Billions of rows/sec scan rate per CPU core
 - Row format is millions/sec

Example:
Find all sales in state of CA
Superfast In-Memory Joins

Example: Find total sales in outlet stores

- Bloom filter created on dimension scan
- Bloom filter pushdown:
 - Filtering pushed down to fact scan
 - Returns only rows that are likely to be join candidates
- Joins tables **10x** faster

**Example: **

<table>
<thead>
<tr>
<th>Store ID</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>100</td>
</tr>
<tr>
<td>38</td>
<td>200</td>
</tr>
<tr>
<td>64</td>
<td>300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Store ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>15, 38, 64</td>
</tr>
</tbody>
</table>
Superfast In-Memory Reporting

Example: Report sales of footwear in outlet stores

- Create (empty) in-memory report outline during dimension scan
- Push down report outline aggregation to fact scan
- Reduces complex aggregations to series of fast in-memory scans
- Reports run 10x faster
 - Without predefined cubes
Much faster Mixed Workloads

- Complex OLTP is Slowed by Analytic Indexes

 Inserting one row into a table requires updating 10-20 analytic indexes: *Slow!*

- Column Store Replaces Analytic Indexes

 - Fast analytics on *any* columns
 - Column Store not persistent so DML is $2x-5x$ faster
Scale-Out In-Memory Database to Any Size

- Scale-Out across servers to grow memory and CPUs
- DISTRIBUTE clause: by Partition, Sub-Partition, or Rowid Range
- In-Memory **queries parallelized** across servers to access local column data
- **Direct-to-wire** InfiniBand protocol speeds messaging
A Brief History of Time

Before 2013
- Miscellaneous Events
 - Big Bang
 - Dinosaurs
 - Battlestar Galactica
 - Relational Databases
 - Back to the Future 1,2,3
 - etc.

Sept 2013
- Database In-Memory Announced
 - Industry first dual-format inmemory database
 - Trivial to deploy

July 2014
- Database In-Memory General Availability
 - Oracle Database 12.1.0.2
 - Orders of magnitude faster analytic workloads
 - Faster Enterprise mixed-workload OLTP

7/2014 | OOW 2015
- Database In-Memory Adoption
 - Fastest growing option in the history of Oracle Database
 - Further enhancements across interim update releases

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.
Fastest Customer Adoption Of All Time

Oracle Database In-Memory and Multitenant Options
Customer **In-Memory** Sessions here at Openworld...

Monday 2:45pm
Room 301

Monday 4:00pm
Room 310

Tuesday 4:00pm
Room 307

Wednesday 3:00pm
Room 254

Wednesday 1:45pm
Room 103

Wednesday 1:45pm
Room 103

Wednesday 1:45pm
Room 103

Wednesday 1:45pm
Room 103
“We expected these reports in 10 seconds, but never sub-second.”

– Dan Huls
Senior Technical Director
AT&T Wi-Fi

IDC White Paper: Memory Optimized Transactions and Analytics in One Platform
Mixed Workloads: Improvement to date from GA*

<table>
<thead>
<tr>
<th>Metric</th>
<th>Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU Utilization</td>
<td>337%</td>
</tr>
<tr>
<td>Overall Throughput</td>
<td>285%</td>
</tr>
</tbody>
</table>

Synthetic mixed workload:
- Analytic scans (1%)
- OLTP queries (30%)
- Update (30%)
- Insert (24%)
- Delete (15%)

(*) Disclaimer: Results for illustrative purpose only. Your Mileage May Vary (workload, queries, data)
A Brief History of Time

Before OOW 2013

- Miscellaneous Events
 - Big Bang
 - Dinosaurs
 - Battlestar Galactica
 - Relational Databases
 - Back to the Future 1, 2, 3
 - etc.

OOOW 2013

- Database In-Memory Announced
 - Industry first dual-format inmemory database
 - Trivial to deploy

July 2014

- Database In-Memory General Availability
 - Oracle Database 12.1.0.2
 - Orders of magnitude faster analytic workloads
 - Faster Enterprise mixed-workload OLTP

7/2014 | OOW 2015

- Database In-Memory Adoption
 - Fastest growing option in the history of Oracle Database
 - Further enhancements across interim releases
 - Oct 21, 2015: Marty McFly arrives in Hill Valley

2016

- Database In-Memory Release 2

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.
Back to the Future
Database In-Memory Release 2
Faster In-Memory Joins: In-Memory Join Groups

Example:
Find total sales in outlet stores

Create Join Group store_sales_jg (STORES, STORE_ID), (SALES, STORE_ID);

- **Today:** Joins run on decompressed data
 - Data populated in-memory is compressed
 - Qualifying data is decompressed before join

- **12.2:** Join Groups
 - Users specify which columns used for joins across tables as a **Join Group**
 - Columns specified in a group use same dictionary for encoding
 - Joins occur on symbols rather than data
 - **3x-5x** faster in-memory joins
Faster Expression Evaluation: **In-Memory Expressions**

Example:
```
Select PRICE * TAX
From   SALES;
```

- **Today:** Commonly used expressions are recomputed every time

- **12.2: In-Memory Expressions**
 - Two modes:
 - Manual: User defined virtual columns
 - Automatic: Frequently-evaluated expressions
 - Many uses – e.g. Arithmetic Expressions, Type Conversions, In-Memory optimized JSON format
 - Maintained consistently with source columns
 - All In-Memory query performance optimizations apply - Vector Processing, Storage Indexes, Bloom Filter joins etc.
In-Memory Expressions: Performance Gain Example

Analytic Data Set (TPC-H Schema)

- Explicitly declared in-memory expressions
 - $price \times (1 - \text{discount})$
 - $Price \times (1 - \text{discount}) \times (1 + \text{tax})$
- Shows major performance gains for analytic queries
In-Memory Expressions: Performance Gain Example

- JSON automatically stored in memory optimized format
- Allows much faster processing of JSON_TABLE operations
- Explicitly created IME on JSON_VALUE provides massive speedup for extracting scalar values from JSON fields
SQL in Silicon: **10x** Acceleration of Database In-Memory

SPARC M7

- **Today:** We use standard SIMD vector instructions designed for Graphics and HPC, not for Databases
 - Translating database query operations to SIMD vector instructions is complex and expensive

- **SPARC M7:** New M7 chip has 32 Database Acceleration Engines (DAX), like having 32 specialized cores for Database In-Memory
 - Directly runs basic database query primitives
 - E.g. find all values that match ‘California’
 - **2-10x** speedup – up to 170 Billion Rows per second
Capacity in Silicon: Double In-Memory Capacity

- **TODAY:** Compress FOR QUERY uses value compression
 - Fast since queries run directly on compressed data
 - Lightweight compression, lower compression ratio

Compress for CAPACITY uses bit pattern compression
- Uses Oracle Zip (OZIP): 2-3x better compression than QUERY
- Slower since data must be decompressed prior to access

- **SPARC M7:** Compress FOR QUERY HIGH uses OZIP on SPARC M7
 - DAX includes specialized OZIP decompression engine
 - Runs OZIP decompress at full memory speed, > 120 GB/sec
 - Pipelines decompression and data processing in hardware
 - Doubles memory capacity with negligible performance penalty

32 OZIP Decompressors
In-Memory Column Store on Active Data Guard

- **Today**: In-Memory queries possible only on Primary Database
 - Also on Logical Standby

- **12.2**: In-Memory queries also possible on Active Data Guard (Physical Standby)
 - Analytic reporting can be offloaded to standby
 - Completely different data can be populated into IM column store on standby
 - Different standbys can have different data in their IM column stores
 - Increases capacity and improves availability for inmemory column store
Columnar Flash Cache: In-Memory Columnar on Flash

- **Today:** IM column format only in DRAM of Compute Node
 - Each database node has its own IM column store
 - Data can be distributed or duplicated across nodes

- **12.2:** IM column format on Flash Cache of Storage Node
 - Populate Flash Cache with IM columnar format
 - Smart Scans leverages all IM optimizations:
 - SIMD vector processing
 - Storage index pruning
 - Predicate / Aggregate processing optimizations
 - Multiplies effective Columnar Capacity by **10-100x**
Faster Restore of In-Memory Column Store: **Fast-Start**

- **Today**: IM column store is always rebuilt on startup
 - Recreated from row format (populate)

- **12.2**: IM column format persisted to storage
 - IM column store contents checkpointed to SecureFile Lob on populate
 - When DB restarts population is faster as population process reads the column format directly from storage
 - Faster restore (3-5x) of column store since no need to reformat data
Automatic Data Optimization in 12.1: Recap

- An in-memory heat map tracks disk based block and segment access
 - Heat map is periodically written to storage
 - Data is accessible by views or stored procedures
- Users can attach policies to tables to compress or tier data based on access
 - Tables, Partitions or Sub-partitions can be moved between storage tiers and compression levels
 - Online, no impact to data availability
 - Allows automatic data tiering
Automatic Data Optimization in 12.1: Recap

- An in-memory heat map tracks disk based block and segment access
 - Heat map is periodically written to storage
 - Data is accessible by views or stored procedures

- Users can attach policies to tables to compress or tier data based on access
 - Tables, Partitions or Sub-partitions can be moved between storage tiers and compression levels
 - Online, no impact to data availability
 - Allows automatic data tiering
Automatic Data Optimization with Database In-Memory

- **Today**: The user must specify the contents of the inmemory column store

- **12.2**: IM column store is managed automatically as a new data tier
 - *Two levels* of automation
 - **Policy Mode** - Supports user policies to populate and evict segments
 - **Fully Automatic Mode** - Segment heat map used to add & evict segments based on memory pressure
Automatic Data Optimization with Database In-Memory

- **Today**: The user must specify the contents of the in-memory column store.

- **12.2**: IM column store is managed automatically as a new data tier.
 - *Two possible levels* of automation:
 - **Policy Mode** - Supports user policies to populate and evict segments.
 - **Fully Automatic Mode** - Segment heat map used to add & evict segments based on memory pressure.

In-Memory Column Store

- PRODUCTS
- SUPPLIERS
- SALES
- COSTS
- CUSTOMERS

- SALES_p1
- SALES_p2
- SALES_p3

- Populate
- Evict
Enhanced In-Memory Advisor

Today: In-Memory Advisor is a standalone utility
- Available as an OTN download

12.2: In-Memory Advisor fully integrated with Enterprise Manager and RDBMS
- Accessible from Advisors Home and In-Memory Central
- PL/SQL interface: DBMS_INMEMORY_ADVISOR
- Interactive interface: $ORACLE_HOME/rdbms/admin
- Improved recommendations and performance estimates
Resizeable In-Memory Area

Today: In Memory Area is a static memory pool. If out of memory, need to bounce instance to increase its size.

12.2: In Memory Area can be dynamically resized on a running instance.

- Can shrink buffer cache and grow inmemory area if running low on space.
- No downtime to increase size.

ALTER SYSTEM SET INMEMORY_SIZE = 80G
Database In-Memory Release 2: Summary

Faster Performance
- In-Memory Expressions
- In-Memory Join Groups
- In-Memory Ordering
- SQL In Silicon

Greater Capacity
- Capacity in Silicon
- In-Memory Columnar Flash Cache
- In-Memory on Active Data Guard

Easier to Manage
- Enhanced IM Advisor
- Automatic In-Memory Data Tiering
- Resizeable In-Memory Area

Improved High Availability
- In-Memory on Active Data Guard
- In-Memory Fast Start
In-Memory Database Technology Across Tiers

In-Memory Row Store
- Application

TimesTen In-Memory Database
- Embeddable In-Memory Database for Application Tier
- Primary Usecase: Latency-critical custom OLTP
 - **Microsecond** Response Time
- Standalone Database or as Application-Tier Cache for Oracle Database

Oracle Database In-Memory
- Dual-Format In-Memory Database
- Primary Usecase: Real Time Analytics on any source
 - **Billions of Rows/Sec** analytic data access
- Faster mixed-workload enterprise OLTP
- Storage-Tiering: Combines best of memory, flash, disk
- Transparent: packaged apps run with no changes
Additional Resources

Join the Conversation
- https://twitter.com/db_inmemory
- https://www.facebook.com/OracleDatabase

Related White Papers
- Oracle Database In-Memory White Paper
- Oracle Database In-Memory Aggregation Paper
- When to use Oracle Database In-Memory
- Oracle Database In-Memory Advisor

Related Videos
- In-Memory YouTube Channel
- Managing Oracle Database In-Memory
- Database In-Memory and Oracle Multitenant
- Industry Experts Discuss Oracle Database In-Memory
- Software on Silicon

Any Additional Questions
- Oracle Database In-Memory Blog
Oracle Database In-Memory Schedule for Oracle Open World

<table>
<thead>
<tr>
<th>Date</th>
<th>Title</th>
<th>Location</th>
<th>Speaker</th>
</tr>
</thead>
</table>
| Tuesday Oct 27th
11:00 – 11:45 | Best Practices for Getting Started with Oracle Database In-Memory | Moscone South Room 104 | Maria Colgan Product Manager, Oracle |
| Tuesday Oct 27th
17:00 – 17:45 | Oracle Database In-Memory—What’s New and What’s Coming | Moscone South Room 103 | Juan Loaiza Senior Vice President, Oracle |
| Wednesday Oct 28th
13:45 – 14:30 | Oracle Database In-Memory Customer Panel | Moscone South Room 102 | Maria Colgan with 4 In-Memory Customers |
| Wednesday Oct 28th
16:15 – 17:00 | Oracle Database In-Memory: Under the Hood | Moscone South Room 103 | Tirthankar Lahiri – Vice President, Oracle |
| Monday | Oracle Database In-Memory Boot Camp: Everything You Need to Get Started | Hotel Nikko Room Peninsula | Andy Rivenes & Andy Yao |
| Tuesday | 08:45 | | |
| Wednesday | 08:45 | | |
| Thursday | 09:30 | | |
If you have more questions later, feel free to ask